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Abstract— Despite advancements in visual Simultaneous Lo-
calization and Mapping (SLAM), prevailing visual Loop Clo-
sure Detection (LCD) methods primarily rely on compu-
tationally intensive image similarity comparisons, neglecting
temporal-spatial context during long-term exploration. To ad-
dress this issue, we propose TOSA, a novel visual LCD algorithm
harnessing TempOral and SpAtial context for efficient LCD.
Specifically, as the agent explores through time, our approach
recurrently updates a latent feature incorporating historical
information via a Long Short-Term Memory (LSTM) module.
Upon receiving a query frame, TOSA seamlessly fuses the
latent feature with the query feature to predict the candidates’
distribution, thus averting intensive similarity computation.
Additionally, TOSA integrates a temporal-spatial convolution for
candidate refinement by thoroughly exploiting the temporal
consistency and spatial correlation to enhance selected candi-
dates, further boosting the performance. Extensive experiments
across four standard datasets showcase the superiority of our
method over existing state-of-the-art techniques, demonstrating
the effectiveness of utilizing rich temporal-spatial contexts.

I. INTRODUCTION

Loop Closure Detection (LCD), alleviating the accumu-
lated dead-reckoning errors during long-term exploration,
plays a crucial role in Simultaneous Localization and Map-
ping (SLAM) [8] systems. As the visual SLAM gains
increasing attention due to its simplified sensor setup, low
cost, and diverse applications in autonomous driving and
robotics [27], visual LCD becomes increasingly pivotal
within visual SLAM. Consequently, the pursuit of enhancing
visual LCD performance through advanced image analysis
technologies emerges as a prominent research avenue in
computer vision and robotics communities [30, 32].

Existing methods [15, 19] detect the loop closures pri-
marily in two steps: (i) Candidate Proposal: identifying
candidate frames through one-by-one similarity comparisons;
(ii) Candidate Refinement: applying the temporal consistency
and geometrical verification to discern and retain the most re-
liable loop closure candidates. Despite their notable success
and wide-ranging applications, these methods exhibit two
fundamental limitations for further improving the compu-
tational efficiency and detection accuracy. First, prior works
independently compare the image feature similarity between
the query and historical frames to propose candidates, which
thus neglects the rich temporal context information and
necessitates intensive similarity computations, as depicted in
Fig. 1 (a). Secondly, though these methods acknowledge the
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Fig. 1: The comparison between our proposed method and
conventional methods for proposing candidates. Yellow curve
represents the exploration trajectory. Green dot represents the cur-
rent query frame. (a) Conventional methods compute the similarity
between the query and historical frame pairs one by one. (b) Our
method auto-regressively updates a latent feature, which memorizes
the historical temporal context and contributes to the candidate
distribution prediction.

importance of temporal consistency by expecting adjacent
queries to have adjacent loop closures, they overlook the
fact that neighboring frames of a candidate are also likely to
be candidates themselves, reflecting the spatial correlation.

To address the above issues, we introduce a novel frame-
work for visual LCD, named TOSA, which incorporates
two distinct improvements in the two steps to detect the
loop closure more efficiently and accurately. In the first
step, we formulate the candidate identification as a multi-
label classification task instead of relying on ranking frame
similarity. Upon the formulation, we employ a LSTM to
maintain a latent feature, which retains historical information



and undergoes auto-regressive updating during long-term
exploration. Once given a query frame, TOSA fuses the
query and the latent features to directly predict the candidate
distribution over historical frames, thus circumventing com-
putationally expensive similarity comparisons, as illustrated
in Fig. 1. The top-N frames with the probability exceeding
a predefined threshold are selected as the candidates.

In the second step, we introduce a candidate refinement
strategy that harnesses temporal consistency and spatial
correlation to enhance the selected candidates. This strat-
egy incorporates a novel temporal-spatial convolution, a
convolution-like operation, to aggregate activations over the
candidate proposal matrix from both temporal and spatial
dimensions. We select the resulting candidate activations
with scores surpassing a predefined threshold as the final loop
closures. We extensively experiment across four standard
datasets to demonstrate our method’s consistent outperfor-
mance over existing SOTA techniques and conduct module
ablations to showcase the effectiveness of each component.

Our contributions can be summarized as follows:
1) We propose to leverage the temporal-context infor-

mation in an auto-regressive manner for efficient
Candidate Proposal. We believe this new visual LCD
paradigm could potentially inspire the community.

2) We introduce a novel temporal-spatial convolution
operation to harness temporal consistency and spatial
correlation, which improves the Candidate Refinement.

3) Through extensive experiments, we demonstrate the
efficiency and effectiveness of our proposed method
by surpassing the existing SOTA techniques.

II. RELATED WORK

In numerous visual LCD methods, images are represented
as global features. Oliva et al. introduce Gist [21, 22], which
captures scene characteristics to represent images as features.
Kazmi et al. [14] uses the weighted average of nearby loca-
tions’ gist features for image representation. The histogram-
of-oriented-gradients (HOG) [17] creates histograms based
on pixel gradients. Unlike the aforementioned methods, Bag-
of-Words (BoW) [19, 26] clusters local features to establish
a “visual vocabulary” comprising quantified “visual words.”
When the incoming image enters, a visual word histogram is
created based on the widely used TF-IDF [26] as the image
feature. Meanwhile, VLAD [13] quantizes the differences
between local features and neighboring visual words, con-
catenating the distances as image representation.

With deep learning developing fast, many methods uti-
lizing Convolution Neural Network (CNN) for feature
extraction have gradually emerged. Inspired by VLAD,
NetVLAD [3] proposed a differentiable layer for image de-
scription via combing features extracted by base architecture
such as VGG [25], ResNet [12], and MobileNetV2 [24]. Liu
et al. [15] presents a strategy for self-supervised training of
feature extractors utilizing motion knowledge, thus reducing
labeling costs. VLASE [33] detects semantic edges for image
description. FILD [1] uses a proximity graph structure for
fast global feature searching, followed by SURF [5] feature

extraction for geometrical verification. And FILD++ [2] uti-
lizes a single network for global and local feature extraction.

The above image-to-image methods propose loop candi-
dates by comparing the similarity between the query frame
and each database entry. In contrast, sequence-based methods
compute similarity based on sequential sub-maps, which con-
sist of sequences of images [18] or image descriptors [28]. In
SeqSLAM [18], likelihood scores are computed among the
query sequence and database sequences at a predefined con-
stant velocity. The path with minimum cost (i.e., summary
of absolute differences) is regarded as the loop candidate.
Vysotska et al. [31] utilizes graph optimization for such an
alignment process, while Arroyo et al. [4] incorporates GPS
priors for performance enhancement.

After identifying suitable candidates, geometrical verifica-
tion is typically conducted using hand-crafted local features
such as SIFT [16], SURF [5], ORB [23], or learned fea-
tures [20] to filter the real loop closures.

However, these methods don’t consider the intrinsic tem-
poral context information within the traversed route and
involve intensive similarity computation between image pairs
or sequence pairs. In this work, we utilize the rich temporal
context for the candidate proposal by fusing the query feature
with a dynamic-updated latent feature. Additionally, we
introduce a novel temporal-spatial convolution for candidate
refinement, which thoroughly exploits temporal consistency
and spatial correlation inherent in the exploration.

III. METHOD

Fig. 2 presents the framework of our proposed TOSA
for LCD. In the Candidate Proposal stage, TOSA leverages
the temporal context information in an auto-regressive man-
ner to predict the distribution of loop closure candidates.
Subsequently, TOSA incorporates a novel temporal-spatial
convolution operation to thoroughly exploit the temporal-
spatial information for Candidate Refinement.

A. Temporal Context Informed Candidate Proposal

Problem Formulation In LCD, the primary objective is to
identify the most probable loop closures from a set of t
historical frames, given a query frame fq , where q = t+1. In
this paper, we innovatively formulate the Candidate Proposal
step as a multi-label classification task rather than solely
relying on similarity comparisons, assigning N candidates
to a query frame can be seen as predicting N labels.
Image Feature Extractor As depicted in Fig. 2, TOSA first
extracts a global feature embedding ei, serving as a global
image descriptor, for each frame. Given the expectation that
frames sharing similar appearances will yield comparable
embeddings, we pre-train the CNN-based feature extractor
using contrastive learning [11], which evaluates frame simi-
larity via cosine similarity of the global features. However,
directly training the feature extractor with loop closure anno-
tations proves inefficient due to the sparsity of loop closure
instances within a trajectory. Taking inspiration from Liu et
al. [15], we extend our approach by considering neighboring
frames of each frame as corresponding positive samples,
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Fig. 2: Overview of our proposed TOSA. (a) We select N loop candidates, i.e., f
ct+1
0

, f
ct+1
1

, ..., f
ct+1
N

, for the query frame ft+1 by
leveraging temporal context. (b) We refine the loop candidates using a novel temporal-spatial convolution operation. Green proposals in
the proposal matrix represent real loops. Red ones denote false positive proposals, which are filtered out by setting λ2 = 2.

under the assumption that nearby frames are likely to exhibit
the image similarity. The training loss is formulated as:

L(ei, ej) = I(i, j)·max(0, ϵ−d)2+(1−I(i, j))·max(0, ϵ+d)2,

where I(i, j) is an indicator function that outputs 1 when
frame i and j are a pair. d represents the distance between
the two extracted global features, computed using the cosine
similarity of normalized features. ϵ acts as a decision thresh-
old, enforcing a minimum separation between positive and
negative pairs; we set ϵ = 0.8 in our implementation.
Temporal Context Integration During the agent’s long-
term exploration, we maintain a latent state hi to memorize
the temporal context information through a LSTM module.
Upon the arrival of the i-th frame, we directly forward the
input frame embedding ei and the last latent state hi−1 into
the LSTM module, which yields an updated hidden state
hi, as shown in Fig. 2 (a). The initial latent state h0 is a
zero vector. When given a query frame ft+1, we directly
concatenate the query frame embedding et+1 with the latent
state ht and forward the concatenation into a Multilayer
Perceptron (MLP) for predicting the candidate distribution.
To predict the multiple candidates for the query, we translate
this multi-label classification problem into multiple binary
classifications, i.e., we predict a binary distribution for each
historical frame. Label 1 denotes this frame is the candidate,
and label 0 denotes this frame is not the candidate. This
process is formulated as:

p0, · · · ,pt = G(et+1, ht),

where G represents the MLP network followed by a Sigmoid
function; {pi}ti=1 are the binary distributions corresponding
to historical frames.

During training, we optimize the parameters of both the
LSTM and the MLP end-to-end without freezing the CNN-
based feature extractor. The training loss is computed by av-
eraging the Binary Cross-entropy over the historical frames,
formulated as:

L =
1

t

t∑
i=1

(
−I(i) · logp1

i − (1− I(i)) · logp0
i

)
,

where t represents the maximum number of classes, i.e.,

the number of historical frames for a query to select as
candidates. Notation p1

i denotes the probability of frame fi
being the candidate of the query ft+1, and vice versa for p0

i .
During inference, we rank the probabilities associated with

the positive label for all frames. Ultimately, only K frames,
with probabilities exceeding a predefined threshold λ1, are
selected as candidates from the top N frames.

B. Candidate Refinement with Temporal-Spatial Convolution

Proposal Matrix After selecting candidates for the query
frame ft+1, we construct a candidate proposal matrix MP

using all historical query frames and their corresponding can-
didates. As depicted in Fig. 2 (b), MP is a two-dimensional
matrix where the horizontal dimension represents the frame
dimension, and the vertical dimension represents the query
dimension. Each entry MP (i, j) is a binary value, i.e., 0
or 1. A value of 1 indicates that frame j is a loop closure
candidate for query i, whereas a value of 0 means otherwise.
Temporal-Spatial Convolution and Score Matrix As illus-
trated in Fig. 2 (b), when a query frame ft has a candidate
frame fct1 , the neighboring query frames ft±1 are more likely
to have candidate frames fct1±1, indicating the temporal
consistency along the query dimension. Similarly, in the
frame dimension, if a frame fct1 is a candidate for a query
frame ft, then frames fct1±1 are likely to be candidates for
the same query frame, revealing the spatial correlation. To
enhance the utilization of intrinsic temporal-spatial context
information, we introduce a novel operation called temporal-
spatial convolution to augment the selected candidates over
the proposal matrix MP . Concretely, temporal-spatial con-
volution utilizes a convolution kernel κts to aggregate infor-
mation from neighboring query frames (temporal dimension)
and neighboring candidates (spatial dimension), producing a
score matrix MS . For the entry MP (i, j), the convolution
operation with κts is performed as follows:

MS [i, j] = MP

[
i− wt

2
: i+

wt

2
, j − ws

2
: j +

ws

2

]
∗ κst.

Here, wt and ws represent the window size of the tem-
poral and spatial dimensions, respectively, and ∗ denotes
the convolution operation. Notably, due to the consistent
temporal lag between candidates corresponding to separate
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Fig. 3: Precision and recall curves from analytical experiments on hyperparameters N and wt. Separately increasing both N and
ws results in improved performance. While, as N is increased to 10 and wt to 10, the performance approaches saturation.

TABLE I: Hyperparameters and corresponding default values.

Hyperparameter Value
Loop probability threshold, λ1 0.9

Number of proposed candidates, N 10
Temporal window size of κst, wt 10
Spatial window size of κst, ws 3

Score threshold, λ2 6

neighboring queries, we shift the kernel weight center of each
row to reflect this characteristic.

After computing the score matrix MS , we filter out can-
didates with scores below a predefined threshold λ2. These
retained candidates then undergo geometric verification for
further confirmation. Candidates that pass the geometric
verification are considered the final loop closures for the
corresponding query frames.

C. Implementation

For implementation, we choose ResNet-50 [12] as the
backbone for feature extraction, followed by two fully con-
nected layers downgrading the output of ResNet-50 from
2048 to 16. LSTM module maintains a 512-dimension latent
feature. To ensure the adaptability of our approach across
various exploration distances, we maintain consistency by
setting the output dimension of the MLP as M = 4551 for
all evaluation datasets. We employ zero-padding for datasets
with shorter sequence lengths to ensure compatibility. We
summarize the selected important parameters utilized in our
experiments in Tab. I. Default values are employed during
the experiments unless explicitly specified.

IV. EXPERIMENT

In this section, we introduce four publicly available
datasets used for evaluation. Next, we perform a series
of analytical experiments and present comparative results
against state-of-the-art methods, showcasing our method’s
effectiveness. Finally, we analyze our method’s execution
time and memory usage, crucial for its practical deployment.

A. Datasets

To evaluate our proposed method, we conducted extensive
experiments on four publicly available datasets, including

TABLE II: Statistics of the datasets used for evaluation.

Datasets Description Images Size
NC [6] Outdoor, Dynamic 2146, 0.5Hz 640 × 480
CC [6] Outdoor, Dynamic 2474, 0.5Hz 640 × 480

K00 [10] Outdoor, Dynamic 4551, 10Hz 1241 × 376
K05 [10] Outdoor, Dynamic 2761, 10Hz 1226 × 370

TABLE III: Recall at 100% precision of different ws.

ws 2 3 4 5
Recall 92.61% 94.14% 93.55% 93.79%

NewCollege (NC) [6], CityCentre (CC) [6], and two se-
quences from the KITTI dataset [10], namely, K00 and K05.
NC and CC contain 1073 and 1273 pairs of images captured
by two cameras arranged alternatively, respectively. CC is
specially designed to assess the ability to match images in
the presence of scene changes. On the other hand, K00 and
K05 contain 4541 and 2761 images, respectively, captured by
a monocular camera. Additional details about these datasets
are provided in Tab. II. We use the ground truth annotations
from Cummins et al. [6] for NC and CC datasets, where
the loop closures are manually labeled. As for K00 and
K05, the annotations are provided by Zhang et al. [34].
Our feature extractor was first pre-trained on the Places365
dataset [35] and fine-tuned using contrastive learning on the
corresponding evaluation set. We use 50% frames of each
dataset for fine-tuning and overall end-to-end training.

B. Methods Analysis

In this section, we conducted the following analytical
experiments on NC datasets.

We first assess the impact of varying N , which ranges
from 2 to 20, on the final loop closure detection. As depicted
by the precision and recall curves in Fig. 3a, there is a
notable performance improvement as N increases from 2 to
10. However, beyond this threshold, the rate of performance
improvement diminishes, indicating that N = 10 is sufficient
for detecting loops. Moreover, it’s important to note that
the average time required for the subsequent convolution
operation increases proportionally with N . Therefore, we opt
to utilize N = 10 for the following experiments.

Next, we assess the impact of the window size of



TABLE IV: Ablation studies on contrastive learning and candi-
date refinement. Our full model achieves the best result.

Model Recall Precision
w/o contrastive learning 90.50% 100%
w/o candidate refinement 98.12% 84.29%

TOSA (full) 94.14% 100%

TABLE V: Recall at 100% precision of different models. The
bold number indicates the best result, and the underlined number
represents the second-best result. ∗ denotes that the number of
images used in the New College dataset by Tsintotas et al. [29]
and FILD [1] differs from those used in other methods.

Methods NC∗ CC K00 K05
FABMAP 2.0 [7] 52.63 40.11 61.22 48.51

SeqSLAM 2.0 [18] 66.67 75.12 78.33 61.48
Tsintotas et al. [29] 16.30 52.44 93.18 94.20
DLoopDetector [9] 47.56 30.59 72.43 51.97

FILD [1] 76.74 66.48 91.23 85.15
Liu et al. [15] 91.21 86.01 93.02 92.53

Ours (MobileNetV2) 90.39 87.52 94.62 93.68
Ours (ResNet-50) 94.14 90.82 95.12 96.29

temporal-spatial convolution kernel. In Tab. III, we present
the recall values corresponding to different ws, with wt set to
10 and adjusting λ2 to achieve 100% precision. The model
utilizing ws = 3 outperforms the one with ws = 2 by a
considerable margin, underscoring the beneficial impact of
incorporating spatial information when ws > 2. However,
models using ws = 4 and ws = 5 showcase an inferior
performance compared to ws = 3. This is attributed to false
positive candidates within the ws window. While optimizing
λ2 helps exclude these false positives, it inadvertently ex-
cludes some real loops. Based on these findings, we select
ws = 3 for the subsequent experiments.

Fig. 3b presents the precision and recall curves for dif-
ferent values of wt, with ws set to 3 and each row of the
kernel containing values 0.5, 1, 0.5. We adjust λ2 for optimal
performance for each model. The results show that selecting
wt = 10 yields comparable results to wt = 12, suggesting
that ws = 10 adequately captures temporal information. The
green curve corresponds to wt = 1, indicating that candidates
are refined based solely on spatial information. This model
achieves 73.73% recall at 100% precision, significantly lower
than the 94.14% recall achieved by the model with wt = 10,
implying that the negative proposals attain high scores based
on spatial information alone. Additionally, we observe that
the optimal λ2 for models employing wt = 8, wt = 10, and
wt = 12 is 5, suggesting that the upper bound of λ2 for this
type of false positives is 5 when ws = 3. Thus, wt = 8 is
sufficient for selecting true positives while excluding false
positives. The performance improvement achieved by in-
creasing wt to 10 further underscores the untapped potential
of temporal information. We select wt = 10 as the default.

To evaluate the effectiveness of key modules in our design,
including the constrastive learning and candidate refinement,
we ablate these components separately and compare them

TABLE VI: The mean execution time on NC dataset.

Steps Mean Time
Global Feature Extraction 34.6ms

Latent Feature Update 0.5ms
Loop Distribution Calculation 0.7ms

Top-N Selection 0.9ms
Candidate Refinement 8.0ms

Geometrical Verification 25.1ms
Whole System 69.8ms

against our full model. Experimental results are presented in
Tab. IV. Compared to the model without contrastive learning,
denoted as “w/o contrastive learning,” our full model TOSA
achieves a higher recall rate at 100% precision, indicat-
ing the efficacy of optimizing the global feature extractor
through contrastive learning. Notably, the model without
candidate refinement achieves a high accuracy of 98.12%,
demonstrating that the temporal information captured by the
LSTM across the entire historical sequence significantly aids
in identifying actual loop closures for each query frame.
However, the precision is unsatisfactory: 993 query frames
are classified as having loop closures, compared to the actual
853. Our proposed candidate refinement strategy significantly
enhances precision while minimally missing a few true posi-
tives. This trade-off highlights the strategy’s effectiveness in
improving precision while maintaining high recall rates.

C. Comparative Result

This section presents a comparative analysis of our method
against several well-known state-of-the-art techniques, in-
cluding FABMAP 2.0 [7], SeqSLAM 2.0 [18], Tsintotas et
al. [29], DLoopDetector [9], An et al. [1], and Liu et al. [15].
Additionally, we introduce a variant implemented with Mo-
bileNetV2 [24] for image feature extraction. Comparison
results regarding recall at 100% precision are presented in
Tab. V. The hyperparameters, except for λ2 adjusted to
8.5 specifically for evaluations on the CC dataset, remain
consistent across all evaluation datasets, as outlined in Tab. I.
The results demonstrate the superior performance of our
proposed TOSA across four datasets compared to these state-
of-the-art methods. Moreover, the variant of TOSA utilizing
MobileNetV2 consistently outperforms these techniques on
CC and K00 datasets while exhibiting a comparable per-
formance on NC and K05. This outcome suggests that our
method maintains its efficacy with a lighter, potentially less
powerful, but more efficient feature extractor.

D. Execution Time and Memory Usage Analysis

We analyze the execution time and memory usage by im-
plementing our method with Python on an Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz machine, along with an
NVIDIA Geforce RTX 3090 GPU. We utilize the variant
based on MobileNetV2 for time consumption evaluation. We
summarize the execution time of each specific step in VI.
The analysis reveals that the majority of the computational
time is attributed to global feature extraction and geometrical
verification. The average execution time of the entire system



aligns with the requirements for real-time operation, achiev-
ing a performance over 14Hz. For memory usage, TOSA
implemented with ResNet-50 occupies around 122.88 MB,
while the MobileNetV2 variant occupies around 34.18 MB.
On average, TOSA with ResNet-50 consumes up to 3 GB of
memory during the inference across multiple tests.

V. CONCLUSION

We propose a new LCD method, i.e. TOSA, which thor-
oughly exploits the intrinsic temporal and spatial context
information. Dividing the method into a Candidate Proposal
and a Candidate Refinement stage, we innovatively formulate
the first stage as a multi-label classification task. To address
it, we propose to leverage the temporal information across the
entire historical sequence through a LSTM module to avert
intensive similarity computations and facilitate detection
accuracy. In the second stage, we introduce a novel temporal-
spatial convolution, which further harnesses the temporal
consistency and spatial correlation, effectively improving
the precision while maintaining the recall. Our extensive
experiments across four datasets demonstrate the superiority
of TOSA over existing state-of-the-art techniques.
Limitations and Future Works Given the computational
expense involved in global feature extraction and the ten-
dency of LSTM to overlook early historical information,
our forthcoming efforts will enhance the feature extraction
network’s efficiency and augment our method’s long-range
modeling capability.
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